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Abstract 

The rise of innovative mobility services provides new alternatives to existing transport modes complying with the vision of 

sustainable urban mobility. However, this rise implies a series of challenges for the transport sector associated with the need for 

adapting the yearlong planning processes to the specific needs of these services. The current paper, by focusing on shared-mobility 

services, provides a brief overview of relevant strategic planning frameworks and considerations discussed so far in the scientific 

community. This is done by emphasizing on the assessment of the optimal fleet size of these services. Finally, it presents the 

conceptual framework and the computational flow of a tool oriented to support such a strategic planning purpose. 
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1. Introduction 

In recent years, shared mobility services are gaining more and more ground constituting an appealing alternative to 

conventional modes of transport enabling a wide range of benefits. A prominent example constitutes cost savings 

given that many persons can collectively fulfil their mobility needs without using their personal vehicle. On top of 

that, the reduced use of private vehicles relieves the adverse impacts of mobility to the environment and improves the 

quality of life within European urban spaces. Furthermore, shared mobility services can be used for first- and last-mile 

trip purposes (Shaheen & Cohen, 2018), enabling synergies with existing, within a city, public transport services. 

 However, the extent to which these benefits will be realized relies on the effective planning of these services. 

According to Shui and Szeto (2020), planning of shared mobility can be divided into strategic, tactical, and operational. 
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Strategic planning revolves around long-term decisions, such as the determination of required fleet and the location of 

dispatching stations (if any). On the other hand, tactical planning revolves around medium-term decisions oriented to 

ameliorate the performance of provided services through, for instance, static fleet relocation and demand management. 

Finally, operational planning involves short-term decisions responding in a dynamic manner to time specific needs 

and conditions. 

This paper has its focus on strategic planning and in particular on the determination of the optimal fleet size of 

shared mobility services. It does so by analyzing a relevant use case targeting one of the pilot cities of a currently on-

going Horizon 2020 project, titled nuMIDAS (New Mobility Data and Solutions Toolkit), namely the city of Milan. 

This use case responds to the need of the city to streamline tenders for shared mobility services by including a rational 

value for the required fleet and, thus, to orchestrate service provision in line with equity principles understood from 

both travelers and service operators’ perspective. 

Before the analysis of the use case, this paper provides a brief, yet inclusive, discussion of the relevant literature 

with the aim of identifying the crucial parameters that need to be considered during the assessment of the optimal fleet 

size of shared mobility services. This is the scope of Section 2. Subsequently, in Section 3, a technical description of 

the use case is provided by highlighting its goals, key actors, required inputs, and target outputs. Finally, in Section 4, 

the operational prototype of the tool associated with this use case is presented, including its conceptual framework 

and computational flow. 

2. Literature review 

The determination of the optimal fleet size of shared-mobility services responding successfully to existing or 

forecasted demand constitutes a critical concern for several stakeholders involved in the value chain of shared-mobility 

services. Building upon the related literature (Shui & Szeto, 2020; Zhai et al., 2019), the fleet size of these services 

should fulfil the objectives of both operators and travelers. The main interest of service operators is to maximize their 

profit or profit margin, while the main interest of travelers is to minimize their generalized trip costs (e.g., travel time 

from an origin to a destination). In this respect, transport planning authorities are typically called to find a balance 

between the perception of operators and travelers, thus enabling the sustainability and viability of provided services. 

Despite the importance of this topic, research endeavors providing a concrete solution to the optimal fleet sizing of 

shared-mobility services from both perspectives are limited. The main purpose of the current subsection is to provide 

an overview of existing research endeavors with the aim of paving the ground for the identification of the critical 

factors that need to be considered.   

Wallar et al. (2019) presents a four-stage methodology for optimizing the fleet size of shared mobility services, 

complying to the concept of Mobility-as-a-Service (MaaS), along with fleet composition. The first stage involves the 

identification of the number of vehicle deposits that are needed to efficiently dispatch the vehicles of which a fleet is 

comprised through a linear integer programming algorithm that seeks to optimize service rate based on maximum 

waiting time and maximum delay. The second stage includes the identification of the set of vehicle trips that serve 

transport demand expressed through service requests. The third stage involves the computation of the minimum 

number of trips so that each request is served exactly once. The final stage includes the estimation of the number and 

type of vehicles needed to carry out these trips in a manner compliant to the minimum desired service quality (e.g., 

each trip has one outgoing and incoming transition). 

Narayan et al. (2020) present a model for determining the fleet size of an on-demand system offering private (e.g., 

taxi-like) and pooled (e.g., ridesharing) services assuming demand elasticity. Such an assumption is made on the 

premise that the fleet size affects the level of provided service that, in turn, affects the attractiveness of the provided 

service. It is assumed that each user owns a set of travel plans, assigns an evaluation score to the executed plan, and 

replan his/her travel strategy (e.g., selected route, selected mode, departure time), thus forming a computational 

sequence that continues in time until a convergence criterion (i.e., equilibrium) is achieved. Demand constitutes an 

input to a supply determination module the purpose of which is to identify the optimal fleet size of the on-demand 

system. The interim results of this module affect the day-to-day travel strategy of users, including potential demand-

side variations. The whole process terminates when an optimal solution, i.e., equilibrium state, is identified. Optimality 

is judged from two perspectives. The first one is the so-called “agency’s perspective” based on which a transport 

planning authority wishes to minimize the generalized travel cost of users and the costs induced by service operators. 



 Mylonas et al./ Transportation Research Procedia 00 (2022) 000–000  3 

The second one is the so-called “operator’s perspective” based on which a service operator wishes to maximize its 

profit. The mathematical formulation of the first perspective includes the minimization of the Total Agency Cost 

(TAC) discerned into the users’ travel cost and the operator’s operating cost. Users’ travel cost includes several 

individual components, such as walking time, in-vehicle time, and waiting time, which are all affected by the decision 

variable (i.e., fleet size). Similarly, the operator’s operating cost is a function of the distance travelled by the vehicles 

of which the fleet is comprised, which is also affected by the size of the fleet. The mathematical formulation of the 

second perspective includes the maximization of the operator’s profit, which is the difference between the operator’s 

revenue and expenditure. Other parameters that are involved in the mathematical relationships the value of which 

needs to be provided as input include value of time, cost of vehicles’ maintenance, cost of fuel, and fare or distance-

based fare of provided services. 

Li and Tao (2010) suggest that the determination of the optimal fleet size of a shared-vehicle service, operated by 

a car rental company within two cities, can be analyzed appropriately as a multi-criteria problem. Special attention is 

paid on the identification of a cost-effective way of transferring vehicles from one city to another aiming to serve both 

cities as well. A dual-stage model, based on dynamic programming and heuristics, is suggested to address both the 

problem of the optimal fleet size and vehicle transfer policy. Such a model considers several factors, including lost 

sales, transfer costs between cities, and the extent of the demand for the shared-vehicle service that corresponds to 

round trips versus single trips. Round trips are made by local travelers, who pick a vehicle from one city and return it 

in the same city, while single trips are made by inter-city travelers, who pick up a vehicle at City A and drop it off at 

City B. Given the unbalanced fleet that may be caused by inter-city travelers and the inability to know in advance the 

ratio of local to inter-city travelers, the authors deal with several variations of the original problem, involving a finite 

and an infinite planning horizon as well as zero and non-zero transfer costs. Moreover, they provide extensions of the 

adopted model into which involve: a) the relaxation of several assumptions (lost sales, lack of information about 

demand composition, and in-day vehicle transfers), b) the analysis of a network comprised of more than two cities, 

and c) the analysis of a fleet comprised of multi-type vehicles with each type fitting the needs of specific customers. 

The relaxation of the lost-sales assumption is made on the premise that a car-rental company has access to a B2B 

leasing market and is, by that means, able to satisfy a certain portion of demand through non-owned vehicles that 

should be returned by customers at the end of the planning horizon. The relaxation of the uncertainty related to demand 

composition is based on the premise that a car-rental company can analyze historical demand-side data and estimate 

the ratio of local to inter-city travelers. Finally, the relaxation of the in-day vehicle transfer is made on the premise 

that a car-rental company may decide to transfer vehicles between two cities or activity areas overnight. 

The study offered by Angelopoulos et al. (2016) address the problem of the optimal fleet sizing of docked bicycle 

sharing services collaterally with the optimal positioning of dock stations. The authors examine the strategic design 

of a docked bicycle sharing system by recognizing that it is important to jointly minimize investment costs and 

maximize travelers’ utility. Important aspects toward this direction are deemed to be the number, location, and 

capacity of stations, as well as the setup of bicycle lanes. Given that each station should be equipped with an adequate 

number of bicycles and these stations should be properly distributed in space to ensure an adequate level of service, 

present a mixed integer linear program is used oriented to provide a solution to the capacitated facility location 

problem. Inputs to this program constitute a set of demand points and a set of potential facility locations. The objective 

is to identify the optimal number, positions, and capacity of these facilities to ensure demand coverage considering 

operational and expansion costs subject to budget constraints. Numerical testing reveals that the higher the budget, 

the larger the number of dock stations suggested by the program. 

Finally, as suggested by Sayarshad et al. (2012) the fleet sizing problem of shared-mobility services should be 

formulated considering both the multi-periodic and stochastic dimension of the demand for such services. The multi-

periodic dimension implies that the rate of end users arriving at a rental station or requesting to book a vehicle, e.g., 

via an app is not constant during a day. In contrast, there are time intervals within a day during which the level of 

demand is higher (peak period) and time intervals during which the level of demand is lower (off-peak period). The 

stochastic dimension implies, among others, that the exact time at which users arrive in a rental station or request to 

book a vehicle (within each time period) is subject to uncertainty. 
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3. Use case analysis 

The current subsection aims to elaborate and highlight the technical aspects behind the problem of determining the 

optimal fleet size of a shared-mobility service by adopting a use case analysis approach. This use case has been 

conceptualized based on the willingness of decision-makers in Milan to improve the processes of issuing tenders for 

shared-mobility services, given that they provide a fixed number for the required fleet, which creates complexity in 

the sense that the market can fluctuate, and demand can change over the time of operation. In addition, it is a concern 

of the city to ensure a sufficient level of service at an accessible price not only within the inner city of Milan but across 

the whole metropolitan area. Moreover, as suggested by Shaheen and Cohen (2019) and Nikitas (2019) there is a need 

to define proper fleet management policies, in the sense of rebalancing fleet to achieve a proper density and service 

equity. In this respect, both the optimization of the operable fleet and the enforcement of fleet management will prove 

ineffective if the size of the fleet is a priori not adequate. The presented use case is comprised of a technical description 

targeting the development of a relevant strategic planning tool as well as the clarification of the targeted users and 

data inputs and outputs. 

3.1. Technical description 

The scope of the tool addressed by the current use case is to support policy makers to determine properly the fleet 

size of shared mobility services to be operated within a given area. The fleet size will be determined considering both 

the perspective of service operators and the perspective of end users. According to the former, there is a need to 

identify a value for the fleet size that will lead to the maximization of revenues and the minimization of financial 

losses. According to the later, there is a need to identify a value that will lead to the minimization of the generalized 

cost of trips. By that means, the suggested value will enable the provision of beneficial services for service operators 

that will jointly comply with minimum level of service requirements, i.e., fleet size will not be extremely large to 

exceed the desired operational costs and concurrently the end users will be adequately served without having to wait 

for a long time or walk long distances. To this end, the tool will provide solution to an optimization problem, which 

will involve the minimization of an objective function that will be multi-parametric to cover both perspectives 

mentioned above. This optimization problem will also include constraints reflecting the maximum waiting and 

walking of end users. The parameters mentioned above will be either user-defined or approximated by the tool itself 

using geometric probability distributions. Having defined these parameters and constraints, the tool will execute 

iterative calculations to identify the optimal value for the fleet size. Finally, the tool will provide information 

concerning operating costs and generalized trip costs (e.g., average walking time/distance) corresponding to both the 

optimal solution and a range of fleet size values. 

3.2. Targeted users, data inputs and outputs 

There are several actors involved in the ecosystem of this tool, including, for instance, service operators, 

information service providers, policymakers, transport planners, and travelers (end-users). However, the targeted users 

are policy makers and transport planners supporting policy makers, who are tasked with finding an optimal balance 

between the perspectives analyzed above. In this respect, the tool is expected to be used not in a real-time context but 

in a periodic basis, specifically when there is a need to identify the fleet size of a shared-mobility service to be operated 

within an area of interest (or assess whether an operated service consists of an adequate fleet). The data input and 

output requirements are presented in Table 1. 

     Table 1. Data input and output requirements 

Data inputs Data outputs 

Historical demand data (trips/day hour) Optimal fleet size 

Expected daily demand (trips/day) Demand coverage corresponding to the optimal solution 

Type of service (station-based or free-floating) Profits corresponding to the optimal solution 

Size of the area of interest (km2) Walking time corresponding to the optimal solution 
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Operating cost per vehicle per minute Waiting time corresponding to the optimal solution 

Expected revenues per minute of rent Demand coverage for several fleet size values  

Average users walking speed Profits for several fleet size values  

Mean trip duration Walking time for several fleet size values  

Weighting factors (service operator’s and social perspective) Waiting time for several fleet size values  

Minimum and maximum value of the fleet size  

4. Operational prototype 

4.1. Conceptual framework and computational flow 

In line with the suggestions of Sayarshad et al. (2012) presented in Section 1, the adopted solution to the problem 

of the optimal fleet sizing of shared mobility services preserves the multi-periodic dimension and stochastic dimension 

of the demand for these services. Its overall computational flow is presented in Fig. 1. 

 

 

Fig. 1. Adopted computational flow. 

The first step involves the estimation of a daily demand profile. This is achieved through demand factors calculated 

based on acquired input by the user or implied by the tool itself making use historical data from the operation of the 

same or comparable service within an equivalent area in socioeconomic terms. The next step includes the distribution 

of the demand corresponding to each day hour within each day hour, with the aim of taking into consideration the 

uncertainty characterizing the arrival rate of end users in stations or the rate with which end users demand to book a 

vehicle, e.g., via an app. For this purpose, a uniform probability distribution is utilized building upon available 

empirical data from taxi services that suggest the demand for taxi trips is uniformly distributed in each day hour with 

minor exceptions. 

Having distributed the hourly demand, the next step involves the quantification of the number of served demand 

for each value of the fleet size falling into the range stated by the user (i.e., minimum and maximum fleet size). This 

quantification is achieved by adopting a queue theory-based approach. According to this approach, a demand unit 

(end user) can be served only in the premise that a vehicle is available. Occupied vehicles become re-available after a 

period of time equal to the average trip duration. Furthermore, it is assumed that end users who are not served until 

the upper bound of each daily interval disappear from the queue. By that means, the effect of the provided level of 

service to the level of demand is taken into consideration (i.e., end-users may choose an alternative transport mode if 
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they keep waiting for long). End users are served through the First-In-First-Out (FIFO) principle if the analyzed 

mobility service is station-based. In contrast, end users are randomly served (irrespective of their arrival time) if the 

analyzed mobility service is free-floating. The adopted approach is schematically represented in Fig. 2a. 

From a technical perspective, the amount of served demand is calculated by assessing the value of the trip end time. 

In particular, when a demand unit appears in time ti falling into period [t1, t4] it is assigned with a trip start time equal 

to t1. This demand unit is also assigned with a trip end time equal to infinity. Depending on the availability of vehicles, 

each demand unit is also assigned with an actual trip start time equal to ti plus the time needed for a vehicle to become 

available. If a vehicle is already available when a demand unit appears in time, then the trip start time and the actual 

trip start time is one and the same. The value of the trip end time of served demand units is replaced with a value being 

equal to the actual start time plus the average trip duration. By that means, the amount of served demand is equal to 

the number of demand units the trip end time of which is finite. Moreover, the actual trip start time of non-served 

demand units is replaced with a value being equal to t4. By adopting this approach, the waiting time on behalf of users, 

is also available by subtracting the trip start time from the actual trip start time. 

Walking time is approximated through the spatial distribution of the maximum value of the hourly demand 

(hereafter referred to as maximum hourly demand) as well as the spatial distribution of either vehicles or stations 

within a geographical area of square shape and size equal with that declared by the user. The number of stations, in 

station-based services, is estimated by following a rule-based approach, i.e., a) if the analyzed area is less than 5 km2, 

it is assumed that one station hosts up to 10 vehicles, b) if the analyzed area is greater than 5 km2 and less than 15 

km2, it is assumed that one station hosts up to 15 vehicles, and c) if the analyzed area is greater than 15 km2, it is 

assumed that one station hosts up to 20 vehicles. Such a spatial distribution is achieved with the use of a uniform 

probability distribution for both demand and vehicles or stations. For the case of stations, a constraint is utilized aiming 

to ensure that they are placed to a satisfactory extent apart from each other. 

 

 

Fig. 2. (a) Adopted queue theory-based approach for estimating served demand; (b) Adopted decision-making approach relying on the second-

best theory. 

Having distributed the maximum hourly demand and vehicles or stations in space, an average walking distance is 

calculated by clustering the demand into an equal number of clusters with the number of stations (if the analyzed 

service is station-based) or with the looped number of fleet size (if the analyzed service is free-floating). The calculated 

average walking distance is then utilized for the estimation of the average walking time considering the value provided 

by the user for the average walking speed parameter. 

The last step of the computational flow involves the calculation of the optimal fleet size. The decision variables 

utilized by the tool include the demand coverage and the profitability corresponding to various values of the fleet size. 

The former is assumed to reflect the perspective of travelers (or end users), while the latter is assumed to reflect the 

perspective of service operators. From a mathematical point of view, it should be borne in mind that shape of the 

demand coverage curve closely resembles the shape of a square root function’s curve, while the profitability curve is 

concave. Given that end users always wish to enjoy a greater level of service, the demand coverage curve is 

monotonically increasing. This does not hold true for the shape of the profitability curve, which is increasing for a 

lower range of fleet size and decreasing for a higher range of fleet size. This is attributed to the fact that while service 
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operators require a considerable fleet size to serve demand and thus increase their profits, there is a certain value of 

fleet size beyond which the profits are decreasing given that the utilization rate of vehicles gets steadily lower. 

Furthermore, for considerable high values of fleet size, the profits may become even negative given that the cost of 

operating a large size of fleet exceeds the revenue margin of service operators. 

Moreover, the maximum value of demand coverage may occur for a value of fleet size leading to negative profits. 

In this respect, the maximization of demand coverage concludes to a negative externality for service operators. This 

situation purely implies the need to incorporate in the tool’s algorithm the principles of the general theory of the 

second best. According to this theory, which was originally postulated by Lipsey and Lancaster (1956) with the aim 

of analyzing how the removal of a market distortion may lead to the introduction of a new market distortion, there is 

a second-best policy that maximizes social welfare from a utilitarian point of view. This can be achieved as suggested 

by Bennear and Stavins (2007) through the introduction of an appropriate constraint. In the context of the problem to 

be solved, this constraint involves the exclusion from the analysis of the values of the fleet size that leads to negative 

profits (Fig. 2b). In this respect, it is accepted that there is a solution that maximizes the welfare of service operators 

and a second-best solution maximizing to the extent possible the welfare of travelers (end users). 

The optimal solution derives from the weighted combination of the fleet size values corresponding to the optimal 

solution from the operator’s perspective and the second-best solution from the perspective of travelers. 

4.2. Demonstration and testing 

This section aims to demonstrate and assess the validity of the results produced by the tool presented in Section 

4.1, which is prototyped in Python with the use of the appropriate libraries. Such a purpose is served via a base scenario 

and two test scenarios. The input parameters of these scenarios are provided in Table 2. 

     Table 2. Parameters of the base-case and alternative scenarios 

Data inputs Base scenario 1st scenario  2nd scenario  

Expected daily demand (trips/day) 5000 7500 5000 

Type of service (station-based or free-floating) Station-based Station-based Station-based 

Size of the area of interest (km2) 5 5 5 

Operating cost per vehicle per minute 0.20 0.20 0.20 

Expected revenues per minute of rent 0.45 0.45 0.45 

Average users walking speed 3.6 3.6 3.6 

Mean trip duration 18 18 9 

Weighting factors (service operator’s and social perspective) 0.5 and 0.5 0.5 and 0.5 0.5 and 0.5 

Minimum and maximum value of the fleet size 1 - 500 1 - 500 1 - 500 

 

In the first test scenario, it is assumed that the user provides a greater input value to the expected daily demand. In 

the second scenario, it is assumed that the user provides a lower input value to the mean trip duration. The outputs of 

the algorithm for the base scenario as well as for the two alternative scenarios are presented in Table 3. 

     Table 3. Outputs of the base-case and alternative scenarios 

Data outputs Base scenario 1st scenario 2nd scenario 

Optimal fleet size 108 174 55 

Demand coverage corresponding to the optimal solution 83.70% 87.40% 73.60% 

Expected profits corresponding to the optimal solution €6.980 (daily) €9.511 (daily) €2.764 (daily) 

Average walking time corresponding to the optimal solution 0:06:39 0:04:59 0:09:10 

Average waiting time corresponding to the optimal solution 0:02:30 0:01:47 0:04:29 
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The expected response of the algorithm in the first test scenario constitutes an increased optimal fleet size value 

compared to the base-case scenario considering that a higher number of users should be served. Similarly, in the 

second test scenario a decreased optimal fleet size value is expected, considering the increased service rate of vehicles 

composing the fleet of the analyzed shared mobility service. As it becomes evident by Table 2, the outputs of the tool 

are in line with the initial expectations. 

Conclusions and future steps 

This paper provides a brief overview of the literature related to the strategic planning of shared mobility services, 

placing special emphasis on the identification of the optimal fleet size of such services. On that basis, it presents the 

conceptual and computational framework of a new tool supporting this purpose. The application of the developed tool 

in specific test scenarios showcase that the derived results are rational and in line with the initial expectations. Future 

steps include the excessive stress test of the tool as well as its further evaluation building upon real data input from 

the pilot city of Milan. Based on the derived results the parameters of the tool will be further refined/calibrated. Finally, 

new functionalities will be incorporated involving, among others, demand elasticity.  
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